29 Jan Was sind „Neuronale Netze“?
Die Basis und sozusagen die wichtigste Grundtechnologie für Machine Learning und Künstliche Intelligenz sind Neuronale Netze. Ein neuronales Netz ist eine Ansammlung von einzelnen Informationsverarbeitungs-Einheiten, die Neuronen genannt werden.
Sie sind schichtweise in einer sogenannten Netzarchitektur angeordnet. Die Neuronen – auch Knotenpunkte genannt – eines künstlichen neuronalen Netzes sind schichtweise in sogenannten Layern angeordnet und in der Regel in einer festen Hierarchie miteinander verbunden. Die Neuronen sind dabei zumeist zwischen zwei Layern verbunden, in selteneren Fällen aber auch innerhalb eines Layers. Zwischen den Layern oder Schichten ist jedes Neuron der einen Schicht immer mit allen Neuronen der nächsten Schicht verbunden.
Beginnend mit der Eingabeschicht, dem sogenannten Input Layer am Anfang, fließen Informationen über eine oder mehrere Zwischenschichten (Hidden Layer) bis hin zur Ausgabeschicht (Output Layer) am Ende. Dabei ist der Output des einen Neurons der Input des nächsten.
Die Anzahl der Layer eines neuronalen Netzes ist eine wichtige beschreibende Information. Enthält ein Netz beispielsweise 3 Schichten, spricht man von einem 3-schichtigen Netz.
Die Eingabeschicht ist der Startpunkt des Informationsflusses in einem künstlichen neuronalen Netz. Eingangssignale werden von den Neuronen am Anfang dieser Schicht aufgenommen und am Ende gewichtet an die Neuronen der ersten Zwischenschicht weitergegeben. Dabei gibt ein Neuron der Eingabeschicht die jeweilige Information an alle Neuronen der ersten Zwischenschicht weiter.
Zwischen der Eingabe- und der Ausgabeschicht befindet sich in jedem künstlichen neuronalen Netz mindestens eine Zwischenschicht (hidden layer).
Theoretisch ist die Anzahl der möglichen verborgenen Schichten in einem künstlichen neuronalen Netzwerk unbegrenzt. In der Praxis bewirkt jede hinzukommende verborgene Schicht jedoch auch einen Anstieg der benötigten Rechenleistung, die für den Betrieb des Netzes notwendig ist.
Die Ausgabeschicht liegt hinter den Zwischenschichten und bildet die letzte Schicht in einem künstlichen neuronalen Netzwerk. In der Ausgabeschicht angeordnete Neuronen sind jeweils mit allen Neuronen der letzten Zwischenschicht verbunden. Die Ausgabeschicht stellt den Endpunkt des Informationsflusses in einem künstlichen neuronalen Netz dar und enthält das Ergebnis der Informationsverarbeitung durch das Netzwerk.
Die sogenannten „Gewichte“ beschreiben die Intensität des Informationsflusses entlang einer Verbindung in einem neuronalen Netzwerk. Jedes Neuron vergibt dazu ein Gewicht für die durchfließende Information und gibt diese dann gewichtet und nach der Addition eines Wertes für die neuronen-spezifische Verzerrung (Bias) an die Neuronen der nächsten Schicht weiter.
Üblicherweise werden die Gewichte und Verzerrungen zum Beginn des Trainings im Wertebereich zwischen -1 und 1 initialisiert, können jedoch später auch deutlich außerhalb dieses Bereichs liegen. Das Ergebnis der Gewichtung und Verzerrung wird oft durch eine sogenannte Aktivierungsfunktion (z.B: Sigmoid oder tanh) geleitet, bevor es an die Neuronen der nächsten Schicht weitergeleitet wird.
Die Gewichte und Verzerrungen werden während des Trainingsprozesses so angepasst, dass das Endresultat möglichst genau den Anforderungen entspricht.
Die einfachste Form eines neuronalen Netzes ist das sogenannte „Perzeptron“. In der ursprünglichen Grundform beinhaltet diese Art der Netzwerke nur ein einziges Neuron (Perzeptron) mit anpassbaren Gewichtungen und einem Schwellenwert.
Es gibt über diese einfachste Form hinaus noch eine Vielzahl anderer Formeln von Neuronen Netzen. Die Feedfoward-Netze folgen der Feedforward-Logik: Informationen werden von der Eingabeschicht über die Zwischenschichten bis hin zur Ausgabeschicht in eine Richtung („vorwärts“) weitergereicht.
Daneben gibt es auch Varianten, bei denen zusätzliche Verbindungen existieren, durch die Informationen bestimmte Bereiche des Netzwerkes auch rückwärts bzw. erneut durchlaufen können. Diese Netzwerke bezeichnet man als rekurrente Netzwerke, rückgekoppelte Netzwerke oder Feedback-Netzwerke.
Verschiedene Varianten sind dabei möglich:
- direkte Rückkopplung (ein Neuron nutzt seinen Output als erneuten Input)
- indirekte Rückkopplung (der Output eines Neurons wird als Input eines Neurons in einer vorgelagerten Schicht verwendet)
- seitliche Rückkopplung (der Output eines Neurons wird als Input eines Neurons in der selben Schicht verwendet)
- vollständige Verbindung (der Output eines Neurons wird von jedem anderen Neuron im Netz als zusätzlicher Input verwendet
Rekurrente Netzwerke sind insbesondere dann erforderlich, wenn es um sequenzielle Informationsverarbeitung geht (Sequence-to-Sequence Netze). Dies ist beispielsweise bei der Handschrifterkennung, der Spracherkennung und der maschinellen Übersetzung der Fall. Netzwerke, die für die Erfüllung dieser Aufgaben verwendet werden basieren meist auf einer direkten Rückkopplung.
Als Gründer mit KI Menschenleben retten – Reflektion des Interviews mit Felix Faber von MINDPEAK
Ein spannendes Interview mit dem sympathischen und erfahrenen Gründer Felix Faber aus Hamburg, das ein Musterbeispiel für Digitalisierung und Gründermentalität aufzeigt und Einblicke in ein innovatives Health-AI Start-Up lifert.
Künstliche Intelligenz und Hick´s Law
Künstliche Intelligenz führt zu schnelleren Prozessen und effizienteren Abläufen. Das bedeutet auch eine neue Arbeitsteilung zwischen Technologie und Mensch. Kann der Mensch das erhöhte Tempo halten oder sind wir dadurch überfordert? Die Antwort wird mit einem Blick auf ein altes Gesetz der Mensch-Maschine-Interaktion möglich.
KI verändert Finanzunternehmen in vielen Bereichen
Künstliche Intelligenz und Anwendungen, die auf diesen Technologien und Prinzipien beruhen, halten Einzug in immer mehr Bereiche der Finanzwirtschaft. Das wird auch in Zukunft so weitergehen. Denn die Vorteile lassen sich klar beschreiben. Für Unternehmen kommt es aber nicht nur auf die Technik an. Es geht vielmehr um eine sinnvolle Arbeitsteilung zwischen intelligenten Systemen und Menschen. Die aktuellen Einsatzfelder von Technologien, die unter dem Oberbegriff der „Künstlichen Intelligenz“ zusammengefasst werden, im Finanzbereich lassen sich klar benennen. Es sind Kundeninteraktionen und...
Kognitive Vielfalt: KI und die Zukunft der Arbeit
Wenn es um die künftigen Anforderungen für die Entwicklung vom KI Systemen geht, steht das Thema Diversität immer deutlicher im Vordergrund. Die bisherigen Erfahrungen mit dem Einsatz von Machine Learning und autonomen Systemen haben gezeigt, dass die bisherigen Ansätze und Verfahren an ihre Grenzen stoßen, ja sogar gefährliche Fehlentwicklungen und Risiken für die Zukunft mit sich bringen. Für Unternehmen wird also Diversity Management und der Einsatz von vielfältigen und gemischten Teams ein wichtiger Erfolgsfaktor beim Einsatz von Künstlicher Intelligenz. Zunächst...
Wie Führungskräfte im KI Zeitalter kommunizieren und motivieren
Die Arbeit von morgen sieht anders aus. Automatischer, technischer und „künstlich intelligenter“. Führungskräfte bleiben dabei aber Menschen. Wie muss sich die Führung in Kommunikation und Kultur hier anpassen und verändern? Es zeichnen sich zwei Pole der neuen Führungskultur ab, die auf den ersten Blick nicht miteinander vereinbar scheinen – und die Führungskräfte vor ganz neue Aufgaben und Herausforderungen stellen. Das Ausmaß dieser Entwicklung ist erst von wenigen Autoren und Wissenschaftlern analysiert worden. Weitgehende einig sind sich aber alle in ihrer...
Künstliche Intelligenz in der Medizin
Blicken wir heute in die Praxen und vor allem in die Krankenhäuser, dann finden wir einen sehr hohen Anteil an Technologie in der Medizin. Und das wird sich in den kommenden Jahren noch weiter verstärken. Denn Künstliche Intelligenz kann und wird die Medizin auf ein neues Level heben.
Demographie und KI – Warum beides zusammengehört
In der Diskussion über zunehmende Digitalisierung und die künftigen Einfluss von Künstlicher Intelligenz wird oft und gerne auf den drohenden Verlust von vielen Arbeitsplätzen verwiesen. Begründet wird das mit zunehmendem Wettbewerb durch immer stärker auf Effizienz optimierte Prozesse und höherer Produktivität durch Automatisierung und Autonomisierung. Das stimmt auch. Oft wird aber ein entscheidender Faktor dabei übersehen. Und dieser Faktor hat nichts mit Digitalisierung oder gar mit Künstlicher Intelligenz zu tun. Im Gegenteil. Es geht um etwas höchst biologisches und menschliches:...
Ein neues Verhältnis von Intuition und Technik
Automatisierung ist im Marketing und in der Werbung einer der Megatrends der letzten Jahre. Dieser Trend wird auch ungebrochen weitergehen. Denn die Leistungen von Maschinen und Systemen, stellen das Vermögen von Menschen bei hochkomplexen Aufgaben und unter enormen Zeit- und Erfolgsdruck deutlich in den Schatten. Die gesamte Branche könnte also in absehbarer Zeit möglicherweise auch ohne Menschen auskommen… An einigen Stellen sind menschliche Fähigkeiten und Eigenheiten aber dennoch unersetzlich. Und erfolgsentscheidend. WeGoFive sprach mit Claas Voigt, Geschäftsführer des Performance Marketers...
Mensch und KI als Team gegen „Fake News“
Fake News, Lügenkampagnen und automatisierte Propaganda sind eine der größten Herausforderungen für demokratische Gesellschaften, die Politik und auch für Unternehmen. Künstliche Intelligenz wird von einigen als die ultimative Lösung dieses Problems gepriesen. Stimmt das? Was kann KI gegen Fake News ausrichten – und was nicht? Der Auftritt vor dem Untersuchungsausschuss des US Kongresses war ebenso unangenehm wie die Befragung vor dem Ausschuss des Europäischen Parlaments: Mark Zuckerberg, Chef von Facebook, Instagram und Whatsapp, musste sich dafür rechtfertigen, dass seine Plattformen...
Wie KI Innovationen sinnvoll unterstützen kann
Die Geschwindigkeit der Veränderung und der Bedarf an Innovationen ist für Unternehmen in mittlerweile allen Branchen so hoch wie nie. Das wird sich auch nicht mehr ändern. Künstliche Intelligenz ist im Vergleich zum Menschen schnell, präzise und ausdauernd. Eigenschaften, die also gerade bei Innovationen und im Business Development gefragt sind.
Machine Learning sorgt für optimale Prognosen
Schon heute im Einsatz: Predictive Analytics“ in Medien Auch wenn es immer noch keine Glaskugel gibt, die einem die Zukunft zeigt: Medienmacher und Kommunikatoren in PR und Marketing können mit Hilfe Künstlicher Intelligenz deutlich mehr über morgen und übermorgen wissen und berichten, als noch vor wenigen Jahren. Das liegt an schier unendlichen Mengen an Daten und an Methoden und Instrumenten, diese auch auszuwerten. Das Ganze nennt sich dann „Predictive Analytics“ und bietet Potenzial und Chancen auf vielen Ebenen. Für die...
Wie ein Schiffsdiesel bei der Einführung von KI helfen kann – Reflektion des Interviews mit Jochen Werne, Bankhaus August Lenz
Jochen Werne ist hauptberuflich Director & Authorized Officer für das Bankhaus August Lenz in München. In unserem Interview schlagen wir einen Bogen von der KI zu dem grundsätzlichen Umgang mit Veränderungen.
Der Weg zum richtigen Einsatz von KI im Unternehmen
Wo und wie kann ich in meinem Unternehmen Künstliche Intelligenz überhaupt einsetzen? Diese Frage stellen sich viele Menschen in Unternehmen. Zu recht: Denn KI wird sehr viel in Unternehmen verändern und vielleicht sogar über den Haufen werfen, was wir heute noch als normal und selbstverständlich ansehen.
Wie neue Technologie Prozesse und Organisationen verändern (müssen)!
Technologien bestimmen Abläufe und Organisationen. Meistens denken wir ja, es sei anders herum – oder zumindest reden wir uns das so ein. Nach dem Motto: Eine neue Technologie soll die Abläufe optimieren, die Kosten senken und so die Marge sichern. Alles andere soll so bleiben, wie es ist. Aber das ist eben nicht der Fall.
Was sind Intelligente Agenten?
Intelligente Agenten sind schon heute sehr gut darin, bestimmte Probleme zu lösen. Sie können das sogar oft sehr viel schneller und besser als Menschen. Intelligente Agenten sind zwar keine selbstlernenden Systeme, aber sie finden selbständig die Lösung für jedes definierte Problem.
Teamwork gewinnt! – Mensch und Maschine machen gemeinsam Quantensprünge möglich
Supercomputer wie Deep Blue oder Watson und andere KI Systeme schlagen Menschen in vielen Bereichen. Werden dem Menschen nach und nach eigene Domänen von „intelligenten Maschinen“ entrissen, bei denen sich bisher keiner vorstellen wollte, dass das passieren könnte? Mehr zu unseren Gedanken in diesem Beitrag.
Die Machtfrage – Bestimmt der Mensch oder die Maschine?
Die Arbeits- und Wirtschaftspsychologie unterscheidet drei Typen von Motivation, die das Engagement von Menschen bei dem, was sie tun bestimmen und die ebenso bestimmend sind, ob und wie sich eine Person mit dem identifiziert, was sie tut. In allen drei Bereichen spielt KI eine besondere Rolle.
Künstliche Intelligenz verändert die Wahrnehmung unserer Arbeit
Das sogenannte Job Demands Ressources Modell erklärt Arbeitsmotivation und die Beeinflussung durch innere und äußere Faktoren. Wie sich KI auf Motivation und Identifikation auswirken kann ist hier die entscheidende Frage für eine erfolgreiche Zukunft in der fünften Stufe der Evolution.
Das menschliche Urteil – Der entscheidende Wertschöpfer bei KI
Voraussagen spielen eine bedeutende Rolle, wenn es darum geht, Entscheidungen zu treffen. Eine weitere Zutat ist dazu unabdingbar und wichtig, welche die KI-Gemeinschaft bisher allzu oft unterschätzt oder gar nicht beachtet hat und die ihm aktuellen Hype auch wieder zum allergrößten Teil untergeht: Bewertung oder Beurteilung.
Was ist Machine Learning?
Ein wichtiges Merkmal von Systemen mit künstlicher Intelligenz ist die Fähigkeit, selbständig zu lernen. Selbstlernende Machine Learning Algorithmen können im Unterschied zu klassischer Software mit festen Regeln die besten Regeln für die Lösung bestimmter Aufgaben selber lernen.
Was sind „Convolutional Neural Networks“ (CNN)?
Das Convolutional Neural Network (faltendes neuronales Netzwerk) wird insbesondere im Bereich der Bild- und Audioverarbeitung häufig eingesetzt. Üblicherweise besteht ein solches Convolutional Neural Network aus mindestens 5 Schichten zur Mustererkennung.
Was sind „Neuronale Netze“?
Die Basis und wichtigste Grundtechnologie für Machine Learning und Künstliche Intelligenz sind Neuronale Netze. Ein neuronales Netz ist eine Ansammlung von einzelnen Informationsverarbeitungs-Einheiten, die als Neuronen bezeichnet werden. Sie sind in einer sogenannten Netzarchitektur angeordnet.
Was ist künstliche Intelligenz?
Künstliche Intelligenz umfasst zwei grundlegende Aspekte. Zum einen wird darunter die Schaffung und Nachahmung menschlichen Verhaltens und Denkens verstanden. Der zweite Aspekt ist die automatische Aufgabenerledigung, die klar definierte Aufgabenbereiche übernehmen kann.
No Comments